

Laboratory Manual
ON

Internet Of Things

(For 6th Semester CSE/IT)

Prepared by:

 Mrs. Naina Patel Pabitra Kumar Maharana

 PTGF (CSE&IT) PTGF(CSE/IT)

UCP Engineering School UCP Engineering School

 Berhampur Berhampur

Understating basics of Arduino IDE

Arduino programs are written in the Arduino Integrated Development
Environment (IDE). Arduino IDE is a special software running on your system
that allows you to write sketches (synonym for program in Arduino language)
for different Arduino boards. The Arduino programming language is based on a
very simple hardware programming language called processing, which is
similar to the C language. After the sketch is written in the Arduino IDE, it
should be uploaded on the Arduino board for execution.
The first step in programming the Arduino board is downloading and installing
the Arduino IDE. The open-source Arduino IDE runs on Windows, Mac OS X,
and Linux. Download the Arduino software (depending on your OS) from the
official website and follow the instructions to install.
Now let’s discuss the basics of Arduino programming.
The structure of Arduino program is pretty simple. Arduino programs have a
minimum of 2 blocks,
Preparation & Execution
Each block has a set of statements enclosed in curly braces:

void setup()
{
statements-1;
.
.
.
statement-n;
}
void loop ()
{
statement-1;
.
.
.
statement-n;
}
Here, setup () is the preparation block and loop () is an execution block.
The setup function is the first to execute when the program is executed, and
this function is called only once. The setup function is used to initialize the pin
modes and start serial communication. This function has to be included even if
there are no statements to execute.

void setup ()
{
pinMode (pin-number, OUTPUT); // set the ‘pin-number’ as output
pinMode (pin-number, INPUT); // set the ‘pin-number’ as output
}
After the setup () function is executed, the execution block runs next. The
execution block hosts statements like reading inputs, triggering outputs,
checking conditions etc..
In the above example loop () function is a part of execution block. As the name
suggests, the loop() function executes the set of statements (enclosed in curly
braces) repeatedly.
Void loop ()
{
digitalWrite (pin-number,HIGH); // turns ON the component connected to ‘pin-
number’
delay (1000); // wait for 1 sec
digitalWrite (pin-number, LOW); // turns OFF the component connected to
‘pin-number’
delay (1000); //wait for 1sec
}
Note: Arduino always measures the time duration in millisecond. Therefore,
whenever you mention the delay, keep it in milli seconds.

The Arduino language
The Arduino language is C++.
Most of the time, people will use a small subset of C++, which looks a lot like C.
If you are familiar with Java, then you will find C++ easy to work with and to
recognize. If you have never programmed before, do not worry, and do not be
afraid. In the next few paragraphs, you will learn everything you need to get
started.
The most important “high level” characteristic of C++ is that it is object-
oriented. In such a language, an object is a construct that combines functional
code (the code that does things like calculations and memory operations), with
“state” (the results of such calculations, or simply values, stored in variables).
Object orientation made programming much more productive in most types of
applications when compared with earlier paradigms because it allowed
programmers to use abstractions to create complicated programs.
For example, you could model an Ethernet adaptor as an object that contains
attributes (like its IP and MAC addresses) and functionality (like asking a DHCP
server for network configuration details). Programming with objects became

the most common paradigm in programming, and most modern languages, like
Java, Ruby, and Python, have been influenced heavily by C++.
Much of the sketch code you will be writing and reading will be referencing
libraries containing definitions for objects (these definitions are called
“classes”). Your original code, to a large extent, will consist of “glue” code and
customizations. This way, you can be productive almost right away by learning
a small subset of C++.
The code that makes up your sketch must be compiled into the machine code
that the microcontroller on the Arduino can understand. This compilation is
done by a special program, the compiler. The Arduino IDE ships with an open-
source C++, so you don’t have to worry about the details. Imagine: every time
you click the “Upload” button, the IDE starts up the compiler, which converts
your human-readable code into ones and zeros, and then sends it to the
microcontroller via the USB cable.
As every useful programming language, C++ is made up of various keywords
and constructs. There are conditionals, functions, operators, variables,
constructors, data structures, and many other things.
In this lesson, you will learn about the structure of an Arduino program,
functions, and variables.

The structure of an Arduino sketch
The simplest possible Arduino sketch is this
void setup() {
// put your setup code here, to run once:
}
void loop() {
// put your main code here, to run repeatedly:
}
This code contains two functions in it.
The first one is setup(). Anything you put in this function will be executed by
the Arduino just once when the program starts.
The second one is loop(). Once the Arduino finishes with the code in
the setup() function, it will move into a loop(), and it will continue running it in
a loop, again and again, until you reset it or cut off the power.
Notice that both setup() and loop() have open and close parenthesis?
Functions can receive parameters, which is a way by which the program can
pass data between its different functions. The setup and loop functions don’t
have any parameters passed to them. If you add anything within the
parenthesis, you will cause the compiler to print out a compilation error and
stop the compilation process.

Every single sketch you write will have these two functions in it, even if you
don’t use them.
In fact, if you remove one of them, the compiler again will produce an error
message. These are two of the few expectations of the Arduino language.
These two functions are required, but you can also make your own. Let’s look
at this next.
Custom functions
A function is merely a group of instructions with a name. The Arduino IDE
expects that the setup() and loop() functions will be in your sketch, but you
can make your own. Group instructions inside functions is a good way of
organizing your sketches, especially as they tend to get bigger in size and
complexity as you become a more confident programmer.
To create a function, you need a definition and the code that goes inside the
curly brackets.
The definition is made up of at least:

 a return type
 a name
 a list of parameters

Here’s an example
int do_a_calc(int a, int b)
{
 int c = a + b;
 return c;
}
The return type here is int in the first line. It tells the compiler that when this
function finishes its work, it will return an integer value to the caller (the
function that called it).
The name (also known as the “identifier”) of the function is do_a_calc. You can
name your functions anything you like as long as you don’t use a reserved
word (that is, a word that the Arduino language already uses), it has no spaces
or other special characters like %, $ and #. You can’t use a number as the first
character. If in doubt, remember only to use letters, numbers, and the
underscore in your function names.
In the first line of the body, we create a new variable, c, of type integer (int).
We add a and b and then assign the result to c.
And finally, in the second line of the body of the function, we return the value
stored in c to the caller of do_a_calc.
Let’s say that you would like to call do_a_calc from your setup function. Here’s
a complete example showing how to do that:

void setup()
{
 // put your setup code here, to run once:
 int a = do_a_calc(1,2);
}

void loop()
{
 // put your main code here, to run repeatedly:
}

int do_a_calc(int a, int b)
{
 int c = a + b;
 return c;
}
In the setup() function, the second line defines a new variable, a. In the same
line, it calls the function do_a_calc, and passes integers 1 and 2 to it.
The do_a_calc function calculates the sum of the two numbers and returns the
value 3 to the caller, which is the second line of the setup() function. Then, the
value 3 is stored in variable a, and the setup() function ends.
There’s a couple of things to notice and remember.
Comments
Any line that starts with // or multiple lines that start with /* and finish
with */ contain comments.
Comments are ignored by the compiler. They are meant to be read by the
programmer.
Comments are used to explain the functionality of code or leave notes to other
programmers (or to self).
Scope
In the setup() function, there is a definition of a variable with an identifier a. In
function do_a_calc, there is also a definition of a variable with the same
identifier (it makes no difference that this definition is in the function
definition line).
Having variables with the same name is not a problem as long as they are not
in the same scope. A scope is defined by the curly brackets. Any variable
between an open and close curly bracket is said to be within that scope. If
there is a variable with the same name defined within another scope, then
there is no conflict.

Be careful when you choose a name for your variables. Problems with scopes
can cause headaches: you may expect that a variable is accessible at a
particular part of your sketch, only to realize that it is out of scope.
Also, be careful to use good descriptive names for your variables. If you want
to use a variable to hold the number of a pin, call it something like:

int digital_pin = 1;
instead of
int p = 1;
You will thank yourself later.
Variables
Programs are useful when they process data. Processing data is what programs
do, all the time. Programs will either get some data to process from a user
(perhaps via a keypad). From a sensor (like a thermistor that measures
temperature), the network (like a remote database), a local file system (like an
SD Card), a local memory (like an EEPROM), and so many other places.
Regardless of the place where your program gets its data from, it must store
them in memory to work with it. To do this, we use variables. A variable is a
programming construct that associates a memory location with a name (an
identifier). Instead of using the address of the memory location in our
program, we use an easy to remember a name. You have already met a
variable. In the earlier section on custom functions, we defined a bunch of
variables, a, b and c, that each holds an integer.
Variables can hold different kinds of data other than integers. The Arduino
language (which, remember, is C++) has built-in support for a few of them
(only the most frequently used and useful are listed here):

C++
KEYWORD

SIZE DESCRIPTION

boolean
1
byte

Holds only two possible values, true or false, even though it occupies a
byte in memory.

char
1
byte

Holds a number from -127 to 127. Because it is marked as a “char,” the
compiler will try to match it to a character from the ASCII table of
characters.

byte
1
byte

Can hold numbers from 0 to 255.

int
2
byte

Can hold numbers from -32768 to 32767.

unsigned
int

2
byte

Can hold numbers from 0-65535

http://www.asciitable.com/
http://www.asciitable.com/

C++
KEYWORD

SIZE DESCRIPTION

word
2
byte

Same as the “unsigned int.” People often use “word” for simplicity and
clarity.

long
4
byte

Can hold numbers from -2,147,483,648 to 2,147,483,647.

unsigned
long

4
byte

Can hold numbers from 0-4,294,967,295

float
4
byte

Can hold numbers from -3.4028235E38 to 3.4028235E38. Notice that
this number contains a decimal point. Only use float if you have no
other choice. The ATMEGA CPU does not have the hardware to deal
with floats, so the compiler has to add a lot of code to make it possible
for your sketch to use them, making your sketch larger and slower.

string - char
array

-
A way to store multiple characters as an array of chars. C++ also offers a
String object that you can use instead that provides more flexibility
when working with strings in exchange for higher memory use.

array - A structure that can hold multiple data of the same type.

To create a variable, you need a valid name and a type. Just like with functions,
a valid name is one that contains numbers, letters, and an underscore starts
with a letter and is not reserved. Here is an example:
byte sensor_A_value;
This line defines a variable named sensor_A_value, which will hold a single
byte in memory. You can store a value in it like this:
sensor_A_value = 196;
You can print out this value to the serial monitor like this:
Serial.print(sensor_A_value);
The serial monitor is a feature of the Arduino IDE that allows you to get a text
from the Arduino displayed on your screen. More about this later, here I want
to show you how to retrieve the value stored in a variable. Just call its name.
Also, remember the earlier discussion about scope: the variable has to be
within scope when it is called.
Another beautiful thing about a variable is that you can change the value
stored in it. You can take a new reading from the sensor and update the
variable like this:
sensor_A_value = 201;
No problem, the old value is gone, and the new value is stored.
Constants
If there is a value that will not be changing in your sketch, you can mark it as a
constant.

Constants have benefits regarding memory and processing speed, and it is a
good habit to use these.
You can declare a constant like this:
const int sensor_pin = 1;
Here, you define the name of the variable sensor_pin, mark it as constant, and
set it to 1. If you try to change the value later, you will get a compiler error
message, and your program will not even get uploaded to the Arduino.
Operators
Operators are special functions that operate one or more pieces of data.
Most people are familiar with the basic arithmetic functions, = (assignment), +,
-, * and /, But there are a lot more.
For example, here are the most commonly used operators:

Operator Function Example

%
Modulo operator. It returns the remainder
of a division.

5%2=1

+=, -=, *=,
/=

Compound operator. It performs an
operation on the current value of a
variable.

int a = 5;
a+= 2;
This will result in a containing 7
(the original 5 plus a 2 from the
addition operation).

++, -- Increment and decrement by 1.
int a = 5;
a++;
This will result in a becoming 6.

==, !=, <,
>, <=, >=

Comparison operators. Will return a
boolean (true or false) depending on the
comparison result.

 == → equality
 != → un-equality
 < → less than
 > → greater than
 <= → less or equal than
 >= → greater or equal than

int a = 5;
int b = 6;
boolean c = a == b;
This will result in variable c
contains a false boolean value.

Operator Function Example

!, &&, ||

Logical operators. The “!” operator will
invert a boolean value.
! → NOT (invert) of a boolean value
&& → AND of two booleans
|| → OR of two booleans

boolean a = true;
boolean b = true;
boolean c = false;

boolean x = !a; // x → false
boolean y = b && c; // y → false
boolean z = b || c; // z → true

Practical using Arduino-interfacing sensors

Arduino Programming in C
Arduino is an open-source hardware and software company, project and user
community that designs and manufactures single-board microcontrollers and
microcontroller kits for building digital devices.

Board Components
These are the components that make up an Arduino board and what each of
their functionalities are.

 Reset Button ~ This will restart any code that is loaded to the Arduino
board

 AREF ~ Stands for “Analog Reference” and is used to set an external
reference voltage

 Ground Pin ~ There are a few ground pins on the Arduino and they all
work the same

 Analog Pins ~ These pins read the signal from an analog sensor and
convert it to digital

 Digital Input/Output ~ Pins 0-13 can be used for digital input or output
 PWM ~ The pins marked with the (~) symbol can simulate analog

output
 USB Connection ~ Used for powering up your Arduino and uploading

sketches
 TX/RX ~ Transmit and receive data indication LEDs
 ATmega Microcontroller ~ Popular microcontroller chip, this is where

the programs are stored
 Power LED Indicator ~ This LED lights up anytime the board is plugged

in a power source
 Voltage Regulator ~ Controls the amount of voltage going into the

Arduino board
 DC Power Barrel Jack ~ This is used for powering your Arduino with a

power supply
 3.3V Pin ~ This pin supplies 3.3 volts of power
 5V Pin ~ This pin supplies 5 volts of power

Install Arduino Code Editor
The open-source Arduino Software (IDE) makes it easy to write code and
upload it to the board. It runs on Windows, Mac OS X, and Linux. The
environment is written in Java and based on Processing and other open-
source software.
Download Arduino Code Editor

 Navigate to arduino.cc and download The open-source Arduino
Software (IDE) for Windows, MacOSX& Linux.

 Use the Online Code Editor, or scroll down on the arduino download
page to download the version for Windows, MacOSX& Linux.

Blink a LED light
Example Arduino Schema
A step by step example showing how to blink a LED light with an Arduino, this
example provides the board schematics, code and a list of components that
are required.
Components Required
1 × Arduino Uno R3
1 × LED
1 × 330Ω Resistor

Example Code (Blink a LED light)
// The pin the LED is connected to
intledPin = 13;

// Executes once when the arduino power button is pressed on
voidsetup() {
pinMode(ledPin, OUTPUT); // Declare the LED as an output
}

// This method repeats forever
// This method makes a led light blink every 1 second
voidloop() {
digitalWrite(ledPin, HIGH); // Turn the LED on
delay(1000); // Delay 1000 milliseconds
digitalWrite(ledPin, LOW); // Turn the led on
delay(1000); // Delay 1000 milliseconds
}

Turn On, LED light with a Push Button
A step by step example showing how to Turn On, LED light with a Push Button
on an Arduino, this example provides the board schematics, code and a list of
components that are required.
Example Arduino Schema

Components Required
1 x Breadboard
1 × Arduino Uno R3
1 × LED
1 x Push Button
1 × 330Ω Resistor
5 x Jumper Cables
Example Code (Turn On, LED light with a Push Button)

intledPin = 13; // The pin the LED is connected to
intinputPin = 2; // The input pin (for a push button)
intinputStatus = 0; // Variable for reading the pin status

// Executes once when the arduino power button is pressed on
voidsetup() {
pinMode(ledPin, OUTPUT); // Declare the LED as an output
pinMode(inputPin, INPUT); // Declare pushbutton as input
}

// This method repeats forever
// This method makes a led light when button is pushed
voidloop() {

// Reads incomming input value from our inputPin
inputStatus = digitalRead(inputPin);

// Check if the input is HIGH (pushbutton released)
if (inputStatus == HIGH) {
digitalWrite(ledPin, LOW); // Turn the LED off
 } else {
digitalWrite(ledPin, HIGH); // Turn the LED on
 }
}

Using a LRD Light Sensor
A step by step example showing how to Turn On, LED light using a LDR Light
Sensor on an Arduino, this example provides the board schematics, code and
a list of components that are required.
Example Arduino Schema

Components Required
1 x Breadboard
1 × Arduino Uno R3
1 × LED
1 x LRD Light Sensor
1 × 330Ω Resistor
1 x 100k Ohm Resistor
7 x Jumper Cables
Example Code (Using a LRD Light Sensor, to turn on a LED light)

constintledPin = 13; // The pin the LED is connected to
constintldrPin = A0; // The pin the LDR sensor is connected to
intldrStatus = 0; // Variable for reading the pin status

// Executes once when the arduino power button is pressed on
voidsetup()
{
pinMode(ledPin, OUTPUT); // Declare the LED as an output
pinMode(ldrPin, INPUT); // Declare LDR Sensor as an input
}

// This method repeats forever
voidloop()
{
// Read incomming data from LRD sensor pin
ldrStatus = analogRead(ldrPin);

if (ldrStatus<= 400) {
digitalWrite(ledPin, HIGH); //It's dark, Turn on LED
 } else {
digitalWrite(ledPin, LOW); // It's bright, Turn off LED
 }
}

Run Project with Arduino IDE
 To run the code, on the menu bar, choose Sketch > Upload. The code

will be uploaded to the ATmega Microcontroller
 Press the reset button to restart any code that is loaded to the Arduino

board

LDR – Automatic Night Lamp
1. Introduction:
A LDR (Light Dependent Resistor) or a photo resistor is a photo conductive
sensor. It is a variable resistor and changes its resistance in a proportion to the
light exposed to it. It resistance decreases with the intensity of light.
It senses the light intensity from surroundings and find whether its day or night
then it automatically turns ON when the surrounding is dark and it turns OFF
when it receives light from surroundings.
2. Required Hardware
Following Hardware will be required to perform this LDR circuit.

S.No. Item Quantity

1 Arduino UNO 1

2 Breadboard 1

3 LDR 1

4 LED 1

https://roboindia.com/store/low-cost-arduino-uno-r3?search=arduino&page=3
https://roboindia.com/store/small-bread-board-self-adhesive-robo-india?search=breadboard
https://roboindia.com/store/LDR?search=ldr
https://roboindia.com/store/3mm-led-3-colors?search=led

5 Resistor 1k 1

6 Resistor 10k 1

7 Male to Male Jumper 7

3. Building Circuit
Make following circuit with the help of above mentioned components. Some
key points to understand about the circuit-
LDR is connected to a 10 Resistance in series. +5 Voltage is applied to this
arrangement. As the light intensity changes LDR value changes thus the voltage
drop on LDR will change and we are going to measure that voltage change.

4. Programming:
Once we are done with circuit part, here is our programme to this circuit.
/Robo India Tutorial on Night Lamp using LDR

https://roboindia.com/store/Resistor%20Pack%20(20%20Type,%2025%20Each)%20-%20500Pcs?search=resistor
https://roboindia.com/store/Resistor%20Pack%20(20%20Type,%2025%20Each)%20-%20500Pcs?search=resistor
https://roboindia.com/store/jumper-wire-male-to-male?search=male%20to%20male%20jumper%20

//https://www.roboindia.com/tutorials

const int LED=2; // LED connect to Digital Pin
const int LDRSensor= A0; //Sensor pin connects to analog pin A0

int state; //declaring variable to store the reading
int threshold=600; //threshold voltage declared

void setup()
{
 pinMode (LED, OUTPUT);
 Serial.begin(9600);
}

void loop()
{
 state= analogRead(LDRSensor); //sensor reading value stored in state variable
 if (state < threshold)
 {
 digitalWrite(LED, HIGH); //if the light is below the threshold value, the LED
will turns on
 Serial.println(state);
 delay(2000);
 }
 else
 {
 digitalWrite(LED, LOW); //otherwise, the LED is off
 Serial.println(state);
 delay(1000);
 }
}
/Robo India Tutorial on Night Lamp using LDR
//https://www.roboindia.com/tutorials

const int LED=2; // LED connect to Digital Pin
const int LDRSensor= A0; //Sensor pin connects to analog pin A0

int state; //declaring variable to store the reading
int threshold=600; //threshold voltage declared

void setup()
{
 pinMode (LED, OUTPUT);
 Serial.begin(9600);
}

void loop()
{
 state= analogRead(LDRSensor); //sensor reading value stored in state variable
 if (state < threshold)
 {
 digitalWrite(LED, HIGH); //if the light is below the threshold value, the LED
will turns on
 Serial.println(state);
 delay(2000);
 }
 else
 {
 digitalWrite(LED, LOW); //otherwise, the LED is off
 Serial.println(state);
 delay(1000);
 }
}
Control the light exposing on LDR by covering it. If it gets dark, the LED
connected will get turn ON automatically.

DHT11 Humidity Sensor on Arduino
DHT11 is a Humidity and Temperature Sensor, which generates calibrated
digital output. DHT11 can be interface with any microcontroller like Arduino,
Raspberry Pi, etc. and get instantaneous results. DHT11 is a low cost humidity
and temperature sensor which provides high reliability and long term stability.
In this project, we will build a small circuit to interface Arduino with DHT11
Temperature and Humidity Sensor. One of the main applications of connecting
DTH11 sensor with Arduino is weather monitoring.
Circuit Diagram
The following circuit diagram shows all the necessary connections required to
implement this project.

https://www.electronicshub.org/humidity-sensor-types-working-principle/

Components Required

 Arduino UNO
 DHT11 Temperature and Humidity Sensor
 Breadboard (or perfboard)
 Power supply
 16 x 2 LCD Display
 10K Ohm Potentiometer
 5K Ohm Resistor (1/4 W)
 Connecting wires

Circuit Description
We will see the circuit design of DHT11 interfacing with Arduino. The DHT11
Humidity and Temperature sensor comes in two variants: just the sensor or a
module.
The main difference is that the module consists of the pull – up resistor and
may also include a power on LED. We have used a module in this project and if
you wish to use the sensor itself, you need to connect a 5K Ω pull – up resistor
additionally.
Coming to the design, the data pin of the DHT11 Sensor is connected to the Pin
11 of Arduino. A 16 x 2 LCD display is used to display the results. The control
pins of LCD i.e. RS and E (Pins 4 and 6 on LCD) are connected to pins 4 and 5 of
Arduino. The data pins of LCD i.e. D4 to D7 (pins 11 to 14 on LCD) are
connected to pins 0 to 3 on LCD.
NOTE: For ease of connection, we have connected the DHT11 Sensor Module
at the ICSP pins of the Arduino as it provides adjacent VCC, DATA and GND

pins. This type of connection is not necessary and you can connect the data pin
of sensor to normal Digital I/O pins.
Component Description
DHT11 Temperature and Humidity Sensor
DHT11 is a part of DHTXX series of Humidity sensors. The other sensor in this
series is DHT22. Both these sensors are Relative Humidity (RH) Sensor. As a
result, they will measure both the humidity and temperature. Although DHT11
Humidity Sensors are cheap and slow, they are very popular among hobbyists
and beginners.

The DHT11 Humidity and Temperature Sensor consists of 3 main components.
A resistive type humidity sensor, an NTC (negative temperature coefficient)
thermistor (to measure the temperature) and an 8-bit microcontroller, which
converts the analog signals from both the sensors and sends out single digital
signal.
This digital signal can be read by any microcontroller or microprocessor for
further analysis.

DHT11 Humidity Sensor consists of 4 pins: VCC, Data Out, Not Connected (NC)
and GND. The range of voltage for VCC pin is 3.5V to 5.5V. A 5V supply would
do fine. The data from the Data Out pin is a serial digital data.
The following image shows a typical application circuit for DHT11 Humidity and
Temperature Sensor. DHT11 Sensor can measure a humidity value in the range
of 20 – 90% of Relative Humidity (RH) and a temperature in the range of 0 –
500C. The sampling period of the sensor is 1 second i.e.

All the DHT11 Sensors are accurately calibrated in the laboratory and the
results are stored in the memory. A single wire communication can be
established between any microcontroller like Arduino and the DHT11 Sensor.
Also, the length of the cable can be as long as 20 meters. The data from the
sensor consists of integral and decimal parts for both Relative Humidity (RH)
and temperature.
The data from the DHT11 sensor consists of 40 – bits and the format is as
follows:
8 – Bit data for integral RH value, 8 – Bit data for decimal RH value, 8 – Bit data
for integral Temperature value, 8 – Bit data for integral Temperature value and
8 – Bit data for checksum.
Example
Consider the data received from the DHT11 Sensor is
00100101 00000000 00011001 00000000 00111110.
This data can be separated based on the above mentioned structure as follows

In order to check whether the received data is correct or not, we need to
perform a small calculation. Add all the integral and decimals values of RH and
Temperature and check whether the sum is equal to the checksum value i.e.
the last 8 – bit data.
00100101 + 00000000 + 00011001 + 00000000 = 00111110
This value is same as checksum and hence the received data is valid. Now to
get the RH and Temperature values, just convert the binary data to decimal
data.
RH = Decimal of 00100101 = 37%

Temperature = Decimal of 00011001 = 250C
Working of the Project
A simple project is built using Arduino UNO and DHT11 Humidity and
Temperature Sensor, where the Humidity and Temperature of the
surroundings are displayed on an LCD display.
After making the connections, we need not do anything as the program will
take care of everything. Although there is a special library for the DHT11
module called “DHT”, we didn’t use it. If you want to use this library, you need
to download this library separately and add it to the existing libraries of
Arduino.
The program written is based on the data timing diagrams provided in the
datasheet. The program will make the Arduino to automatically read the data
from the sensor and display it as Humidity and Temperature on the LCD
Display.
CODE
#include
LiquidCrystal lcd(4, 5, 0, 1, 2, 3);
byte degree_symbol[8] =
{
0b00111,
0b00101,
0b00111,
0b00000,
0b00000,
0b00000,
0b00000,
0b00000
};
int gate=11;
volatile unsigned long duration=0;
unsigned char i[5];
unsigned int j[40];
unsigned char value=0;
unsigned answer=0;
int z=0;
int b=1;
void setup()
{
lcd.begin(16, 2);
lcd.print(“Temp = “);

lcd.setCursor(0,1);
lcd.print(“Humidity = “);
lcd.createChar(1, degree_symbol);
lcd.setCursor(9,0);
lcd.write(1);
lcd.print(“C”);
lcd.setCursor(13,1);
lcd.print(“%”);
}
void loop()
{
delay(1000);
while(1)
{
delay(1000);
pinMode(gate,OUTPUT);
digitalWrite(gate,LOW);
delay(20);
digitalWrite(gate,HIGH);
pinMode(gate,INPUT_PULLUP);//by default it will become high due to internal
pull up
// delayMicroseconds(40);
duration=pulseIn(gate, LOW);
if(duration = 72)
{
while(1)
{
duration=pulseIn(gate, HIGH);
if(duration = 20){
value=0;}
else if(duration = 65){
value=1;}
else if(z==40){
break;}
i[z/8]|=value<<(7- (z%8));
j[z]=value;
z++;
}
}
answer=i[0]+i[1]+i[2]+i[3];

if(answer==i[4] && answer!=0)
{
lcd.setCursor(7,0);
lcd.print(i[2]);
lcd.setCursor(11,1);
lcd.print(i[0]);
}
z=0;
i[0]=i[1]=i[2]=i[3]=i[4]=0;
}
}

Applications

 DHT11 Relative Humidity and Temperature Sensor can be used in many
applications like:

 HVAC (Heating, Ventilation and Air Conditioning) Systems
 Weather Stations
 Medical Equipment for measuring humidity
 Home Automation Systems
 Automotive and other weather control applications

How to Interface LCD (Liquid Crystal Display) Using An Arduino
In Arduino based embedded system design, the Liquid Crystal Display modules
play a very important role. Hence it is very important to learn about how to
interface LCD with an Arduino of 16×2 in embedded system design. The display
units are very important in communication between the human world and the
machine world. The display unit work on the same principle, it does not
depend on the size of the display it may be big or the small. We are working
with the simple displays like 16×1 and 16×2 units. The 16×1 display unit has the
16 characters which present in one line and 16×2 display units have 32
characters which are present in the 2 line. We should know that to display the
each character there are 5×10 pixels. Thus to display one character all the 50
pixels should be together. In the display,there is a controller which is HD44780
it is used to control the pixels of characters to display
What is a Liquid Crystal Display?
The liquid crystal display uses the property of light monitoring of liquid crystal
and they do not emit the light directly. The Liquid crystal display is a flat panel
display or the electronic visual display. With low information, content the LCD’
s are obtained in the fixed image or the arbitrary image which are displayed or

https://www.elprocus.com/lcd-interfacing-with-8051-microcontroller/
https://www.elprocus.com/lcd-interfacing-with-8051-microcontroller/
https://www.elprocus.com/ever-wondered-lcd-works/

hidden like present words, digits, or 7 segment display. The arbitrary images
are made up of large no of small pixels and the element has larger elements.

Liquid Crystal Display of 16×2
The 16×2 liquid crystal display contains two horizontal lines and they are used
for compressing the space of 16 display characters. In inbuilt, the LCD has two
registers which are described below.

 Command Register
 Data Register

Command Register: This register is used to insert a special command in the
LCD. The command is a special set of data and it is used to give the internal
command to the liquid crystal display like clear screen, move to line 1
character 1, setting the curser and etc.
Data Register: The data registers are used to enter the line in the LCD

Pin diagram and description of each pin have explained in the following table.

Pin No Pin Name Pin Description

Pin 1 GND
This pin is a ground pin and the LCD is connected to the
Ground

Pin 2 VCC The VCC pin is used to supply the power to the LCD

Pin 3 VEE
This pin is used for adjusting the contrast of the LCD by
connecting the variable resistor in between the VCC &

https://www.elprocus.com/types-of-7-segment-displays-and-controlling-ways/

Ground.

Pin 4 RS

The RS is known as register select and it selects the
Command/Data register. To select the command register
the RS should be equal to zero. To select the Data
register the RS should be equal to one.

Pin 5 R/W

This pin is used to select the operations of Read/Write.
To perform the write operations the R/W should be equal
to zero. To perform the read operations the R/W should
be equal to one.

Pin 6 EN

This is a enable signal pin if the positive pulses are
passing through a pin, then the pin function as a
read/write pin.

Pin 7 DB0 to DB7
The pin 7 contains total 8 pins which are used as a Data
pin of LCD.

Pin 15 LED +
This pin is connected to VCC and it is used for the pin 16
to set up the glow of backlight of LCD.

Pin 16 LED –
This pin is connected to Ground and it is used for the pin
15 to set up the glow of backlight of the LCD.

LCD Interfacing with the Arduino Module
The following circuit diagram shows the liquid crystal display with the Arduino
module. From the circuit diagram, we can observe that the RS pin of the LCD is
connected to the pin 12 of the Arduino. The LCD of R/W pin is connected to
the ground. The pin 11 of the Arduino is connected to the enable signal pin of
LCD module. The LCD module & Arduino module are interfaced with the 4-bit
mode in this project. Hence there are four input lines which are DB4 to DB7 of
the LCD. This process very simple, it requires fewer connection cables and also
we can utilize the most potential of the LCD module.

The digital input lines (DB4-DB7) are interfaced with the Arduino pins from 5-2.
To adjust the contrast of the display here we are using a 10K potentiometer.
The current through the back LED light is from the 560-ohm resistor. The
external power jack is provided by the board to the Arduino. Using the PC
through the USB port the Arduino can power. Some parts of the circuit can
require the +5V power supply it is taken from the 5V source on the Arduino
board.

https://www.elprocus.com/arduino-basics-and-design/
https://www.elprocus.com/arduino-basics-and-design/

The following schematic diagram shows the LCD module interfacing with the
Arduino.

Program – Arduino to LCD
#include<LiquidCrystal.h>

LiquidCrystallcd(12, 11, 5, 4, 3, 2); // sets the interfacing pins

void setup()
{
lcd.begin(16, 2); // initializes the 16x2 LCD
}

void loop()
{
lcd.setCursor(0,0); //sets the cursor at row 0 column 0
lcd.print("16x2 LCD MODULE"); // prints 16x2 LCD MODULE
lcd.setCursor(2,1); //sets the cursor at row 1 column 2
lcd.print("HELLO WORLD"); // prints HELLO WORLD
}

 Interfacing Air Quality Sensor-pollution (e.g. MQ135) – display data on LCD ,
switch on LED when data sensed is higher than specified value.

In this project we are going to make an IoT Based Air Pollution Monitoring
System in which we will monitor the Air Quality over a webserver using
internet and will trigger a alarm when the air quality goes down beyond a
certain level, means when there are sufficient amount of harmful gases are
present in the air like CO2, smoke, alcohol, benzene and NH3. It will show the
air quality in PPM on the LCD and as well as on webpage so that we can
monitor it very easily.
Previously we have built the LPG detector using MQ6 sensor and Smoke
detector using MQ2 sensor but this time we have used MQ135 sensor as the
air quality sensor which is the best choice for monitoring Air Quality as it can
detects most harmful gases and can measure their amount accurately. In
this IOT project, you can monitor the pollution level from anywhere using your
computer or mobile. We can install this system anywhere and can also trigger
some device when pollution goes beyond some level, like we can switch on the
Exhaust fan or can send alert SMS/mail to the user.
Required Components:

 MQ135 Gas sensor
 Arduino Uno
 Wi-Fi module ESP8266
 16X2 LCD
 Breadboard
 10K potentiometer
 1K ohm resistors
 220 ohm resistor
 Buzzer

Circuit Diagram and Explanation:
First of all we will connect the ESP8266 with the Arduino. ESP8266 runs on
3.3V and if you will give it 5V from the Arduino then it won’t work properly and
it may get damage. Connect the VCC and the CH_PD to the 3.3V pin of Arduino.
The RX pin of ESP8266 works on 3.3V and it will not communicate with the
Arduino when we will connect it directly to the Arduino. So, we will have to
make a voltage divider for it which will convert the 5V into 3.3V. This can be
done by connecting three resistors in series like we did in the circuit. Connect
the TX pin of the ESP8266 to the pin 10 of the Arduino and the RX pin of the
esp8266 to the pin 9 of Arduino through the resistors.
ESP8266 Wi-Fi module gives your projects access to Wi-Fi or internet. It is a
very cheap device and make your projects very powerful. It can communicate

http://circuitdigest.com/microcontroller-projects/arduino-based-lpg-gas-leakage-detector-alarm
http://circuitdigest.com/microcontroller-projects/arduino-smoke-detector-on-pcb-using-mq2-gas-sensor
http://circuitdigest.com/microcontroller-projects/arduino-smoke-detector-on-pcb-using-mq2-gas-sensor
http://circuitdigest.com/internet-of-things-iot-projects

with any microcontroller and it is the most leading devices in the IOT platform.
Learn more about using ESP8266 with Arduino here.
Then we will connect the MQ135 sensor with the Arduino. Connect the VCC
and the ground pin of the sensor to the 5V and ground of the Arduino and the
Analog pin of sensor to the A0 of the Arduino.
Connect a buzzer to the pin 8 of the Arduino which will start to beep when the
condition becomes true.
In last, we will connect LCD with the Arduino. The connections of the LCD are
as follows

 Connect pin 1 (VEE) to the ground.
 Connect pin 2 (VDD or VCC) to the 5V.
 Connect pin 3 (V0) to the middle pin of the 10K potentiometer and

connect the other two ends of the potentiometer to the VCC and the
GND. The potentiometer is used to control the screen contrast of the
LCD. Potentiometer of values other than 10K will work too.

 Connect pin 4 (RS) to the pin 12 of the Arduino.
 Connect pin 5 (Read/Write) to the ground of Arduino. This pin is not

often used so we will connect it to the ground.
 Connect pin 6 (E) to the pin 11 of the Arduino. The RS and E pin are

the control pins which are used to send data and characters.
 The following four pins are data pins which are used to communicate

with the Arduino.
Connect pin 11 (D4) to pin 5 of Arduino.
Connect pin 12 (D5) to pin 4 of Arduino.
Connect pin 13 (D6) to pin 3 of Arduino.
Connect pin 14 (D7) to pin 2 of Arduino.

 Connect pin 15 to the VCC through the 220 ohm resistor. The resistor
will be used to set the back light brightness. Larger values will make
the back light much more darker.

 Connect pin 16 to the Ground.

http://circuitdigest.com/internet-of-things-iot-projects
http://circuitdigest.com/microcontroller-projects/sending-arduino-data-to-webpage
http://circuitdigest.com/microcontroller-projects/arduino-lcd-interfacing-tutorial

Working Explanation:
The MQ135 sensor can sense NH3, NOx, alcohol, Benzene, smoke, CO2 and
some other gases, so it is perfect gas sensor for our Air Quality Monitoring
Project. When we will connect it to Arduino then it will sense the gases, and
we will get the Pollution level in PPM (parts per million). MQ135 gas sensor
gives the output in form of voltage levels and we need to convert it into PPM.
So for converting the output in PPM, here we have used a library for MQ135
sensor, it is explained in detail in “Code Explanation” section below.
Sensor was giving us value of 90 when there was no gas near it and the safe
level of air quality is 350 PPM and it should not exceed 1000 PPM. When it
exceeds the limit of 1000 PPM, then it starts cause Headaches, sleepiness and
stagnant, stale, stuffy air and if exceeds beyond 2000 PPM then it can cause
increased heart rate and many other diseases.
When the value will be less than 1000 PPM, then the LCD and webpage will
display “Fresh Air”. Whenever the value will increase 1000 PPM, then the
buzzer will start beeping and the LCD and webpage will display “Poor Air, Open
Windows”. If it will increase 2000 then the buzzer will keep beeping and the
LCD and webpage will display “Danger! Move to fresh Air”.
Code Explanation:
Using library of MQ135 you can directly get the PPM values, by just using the
below two lines:

MQ135 gasSensor = MQ135(A0);

float air_quality = gasSensor.getPPM();

But before that we need to calibrate the MQ135 sensor, for calibrating the
sensor upload the below given code and let it run for 12 to 24 hours and then
get the RZERO value.

#include "MQ135.h"
void setup (){
Serial.begin (9600);
}
void loop() {
MQ135 gasSensor = MQ135(A0); // Attach sensor to pin A0
float rzero = gasSensor.getRZero();
Serial.println (rzero);
delay(1000);
}

After getting the RZERO value. Put the RZERO value in the library file you
downloaded "MQ135.h": #define RZERO 494.63
Now we can begin the actual code for our Air quality monitoring project.
In the code, first of all we have defined the libraries and the variables for the
Gas sensor and the LCD. By using the Software Serial Library, we can make any
digital pin as TX and RX pin. In this code, we have made Pin 9 as the RX pin and
the pin 10 as the TX pin for the ESP8266. Then we have included the library for
the LCD and have defined the pins for the same. We have also defined two
more variables: one for the sensor analog pin and other for
storing air_quality value.

#include <SoftwareSerial.h>
#define DEBUG true
SoftwareSerial esp8266(9,10);
#include <LiquidCrystal.h>
LiquidCrystallcd(12,11, 5, 4, 3, 2);
const int sensorPin= 0;
int air_quality;

Then we will declare the pin 8 as the output pin where we have connected the
buzzer. lcd.begin(16,2) command will start the LCD to receive data and then
we will set the cursor to first line and will print the ‘circuitdigest’. Then we will
set the cursor on the second line and will print ‘Sensor Warming’.

pinMode(8, OUTPUT);
lcd.begin(16,2);

lcd.setCursor (0,0);
lcd.print ("circuitdigest ");
lcd.setCursor (0,1);
lcd.print ("Sensor Warming ");
delay(1000);

Then we will set the baud rate for the serial communication. Different ESP’s
have different baud rates so write it according to your ESP’s baud rate. Then
we will send the commands to set the ESP to communicate with the Arduino
and show the IP address on the serial monitor.

Serial.begin(115200);
esp8266.begin(115200);
sendData("AT+RST\r\n",2000,DEBUG);
sendData("AT+CWMODE=2\r\n",1000,DEBUG);
sendData("AT+CIFSR\r\n",1000,DEBUG);
sendData("AT+CIPMUair_quality=1\r\n",1000,DEBUG);
sendData("AT+CIPSERVER=1,80\r\n",1000,DEBUG);
pinMode(sensorPin, INPUT);
lcd.clear();

For printing the output on the webpage in web browser, we will have to
use HTML programming. So, we have created a string named webpage and
stored the output in it. We are subtracting 48 from the output because
the read() function returns the ASCII decimal value and the first decimal
number which is 0 starts at 48.

if(esp8266.available())
 {
if(esp8266.find("+IPD,"))
 {
delay(1000);
 int connectionId = esp8266.read()-48;
 String webpage = "<h1>IOT Air Pollution Monitoring System</h1>";
 webpage += "<p><h2>";
 webpage+= " Air Quality is ";
 webpage+= air_quality;
 webpage+=" PPM";
 webpage += "<p>";

The following code will call a function named sendData and will send the data
& message strings to the webpage to show.

http://circuitdigest.com/microcontroller-projects/sending-arduino-data-to-webpage

sendData(cipSend,1000,DEBUG);
sendData(webpage,1000,DEBUG);

cipSend = "AT+CIPSEND=";
cipSend += connectionId;
cipSend += ",";
cipSend +=webpage.length();
cipSend +="\r\n";

The following code will print the data on the LCD. We have applied various
conditions for checking air quality, and LCD will print the messages according
to conditions and buzzer will also beep if the pollution goes beyond 1000 PPM.

lcd.setCursor (0, 0);
lcd.print ("Air Quality is ");
lcd.print (air_quality);
lcd.print (" PPM ");
lcd.setCursor (0,1);
if (air_quality<=1000)
{
lcd.print("Fresh Air");
digitalWrite(8, LOW);

Finally the below function will send and show the data on the webpage. The
data we stored in string named ‘webpage’ will be saved in string
named ‘command’. The ESP will then read the character one by one from
the ‘command’ and will print it on the webpage.

String sendData(String command, const int timeout, boolean debug)
{
 String response = "";
 esp8266.print(command); // send the read character to the esp8266
 long int time = millis();
while((time+timeout) >millis())
 {
while(esp8266.available())
 {
 // The esp has data so display its output to the serial window
 char c = esp8266.read(); // read the next character.
 response+=c;
 }
 }

 if(debug)
 {
Serial.print(response);
 }
 return response;
}

Testing and Output of the Project:
Before uploading the code, make sure that you are connected to the Wi-Fi of
your ESP8266 device. After uploading, open the serial monitor and it will show
the IP address like shown below.

Type this IP address in your browser, it will show you the output as shown
below. You will have to refresh the page again if you want to see the current
Air Quality Value in PPM.

We have setup a local server to demonstrate its working, you can check
the Video below. But to monitor the air quality from anywhere in the world,
you need to forward the port 80 (used for HTTP or internet) to your local or
private IP address (192.168*) of you device. After port forwarding all the
incoming connections will be forwarded to this local address and you can open
above shown webpage by just entering the public IP address of your internet
from anywhere. You can forward the port by logging into your router
(192.168.1.1) and find the option to setup the port forwarding.

Code (Merged)

#include "MQ135.h"
#include <SoftwareSerial.h>
#define DEBUG true
SoftwareSerial esp8266(9,10); // This makes pin 9 of Arduino as RX pin and pin 10 of Arduino as the
TX pin
const int sensorPin= 0;
int air_quality;
#include <LiquidCrystal.h>
LiquidCrystallcd(12,11, 5, 4, 3, 2);
void setup() {
pinMode(8, OUTPUT);
lcd.begin(16,2);
lcd.setCursor (0,0);
lcd.print ("circuitdigest ");
lcd.setCursor (0,1);
lcd.print ("Sensor Warming ");

delay(1000);
Serial.begin(115200);
esp8266.begin(115200); // your esp's baud rate might be different
 sendData("AT+RST\r\n",2000,DEBUG); // reset module
 sendData("AT+CWMODE=2\r\n",1000,DEBUG); // configure as access point
 sendData("AT+CIFSR\r\n",1000,DEBUG); // get ip address
 sendData("AT+CIPMUair_quality=1\r\n",1000,DEBUG); // configure for multiple connections
 sendData("AT+CIPSERVER=1,80\r\n",1000,DEBUG); // turn on server on port 80
pinMode(sensorPin, INPUT); //Gas sensor will be an input to the arduino
lcd.clear();
}
void loop() {
MQ135 gasSensor = MQ135(A0);
float air_quality = gasSensor.getPPM();
if(esp8266.available()) // check if the esp is sending a message
 {
 if(esp8266.find("+IPD,"))
 {
 delay(1000);
 int connectionId = esp8266.read()-48; /* We are subtracting 48 from the output because the
read() function returns the ASCII decimal value and the first decimal number which is 0 starts at
48*/
 String webpage = "<h1>IOT Air Pollution Monitoring System</h1>";
 webpage += "<p><h2>";
 webpage+= " Air Quality is ";
 webpage+= air_quality;
 webpage+=" PPM";
 webpage += "<p>";
 if (air_quality<=1000)
{
 webpage+= "Fresh Air";
}
else if(air_quality<=2000 &&air_quality>=1000)
{
 webpage+= "Poor Air";
}
else if (air_quality>=2000)
{
webpage+= "Danger! Move to Fresh Air";
}
webpage += "</h2></p></body>";
 String cipSend = "AT+CIPSEND=";
 cipSend += connectionId;
 cipSend += ",";
 cipSend +=webpage.length();
 cipSend +="\r\n";

 sendData(cipSend,1000,DEBUG);
 sendData(webpage,1000,DEBUG);

 cipSend = "AT+CIPSEND=";

 cipSend += connectionId;
 cipSend += ",";
 cipSend +=webpage.length();
 cipSend +="\r\n";

 String closeCommand = "AT+CIPCLOSE=";
 closeCommand+=connectionId; // append connection id
 closeCommand+="\r\n";

 sendData(closeCommand,3000,DEBUG);
 }
 }
lcd.setCursor (0, 0);
lcd.print ("Air Quality is ");
lcd.print (air_quality);
lcd.print (" PPM ");
lcd.setCursor (0,1);
if (air_quality<=1000)
{
lcd.print("Fresh Air");
digitalWrite(8, LOW);
}
else if(air_quality>=1000 &&air_quality<=2000)
{
lcd.print("Poor Air, Open Windows");
digitalWrite(8, HIGH);
}
else if (air_quality>=2000)
{
lcd.print("Danger! Move to Fresh Air");
digitalWrite(8, HIGH); // turn the LED on
}
lcd.scrollDisplayLeft();
delay(1000);
}
String sendData(String command, const int timeout, boolean debug)
{
 String response = "";
 esp8266.print(command); // send the read character to the esp8266
 long int time = millis();
 while((time+timeout) >millis())
 {
 while(esp8266.available())
 {
 // The esp has data so display its output to the serial window
 char c = esp8266.read(); // read the next character.
 response+=c;
 }
 }
 if(debug)
 {

 Serial.print(response);
 }
 return response;
}

 Interfacing Bluetooth module (e.g. HC05)- receiving data from mobile phone
on Arduino and display on LCD

Bluetooth is a one of the great example for wireless connectivity. It is used
in many fields. Bluetooth consumes very small amount of energy. Do you
know about Smartphone controlled robot or car. Commonly one of these
two wireless technology is used in Smartphone controlled robot. One is
WIFI and other is Bluetooth. And another commonly used wireless
technology for controlling Robot car is RF. Which is the same remote and
receiver used in drones. Here we are going to interface a Bluetooth Module
(HC-05) with Arduino Uno. And describe each line of code. Then we control
the builtin LED of Arduino Uno from smartphone via Bluetooth.
Before starting we must know about the HC-05
HC-05 Bluetooth Module

HC-05 is a Bluetooth module which can communicate in two way. Which
means, It is full-duplex. We can use it with most micro controllers. Because
it operates Serial Port Protocol (SSP). The module communicate with the
help of USART (Universal Synchronous/Asynchronous Receiver/Transmitter
) at the baud rate of 9600. and it also support other baud rate. So we can
interface this module with any microcontroller which supports USART. The
HC-05 can operate in two modes. One is Data mode and other is AT
command mode. When the enable pin is "LOW" the HC-05 is in Data Mode.
If that pin set as "HIGH" the module is in AT command mode. Here we
operate this module in Data Mode.
Technical Specifications

 Operating Voltage: 4V to 6V (Typically +5V)
 Operating Current: 30mA

 Range: <100m
 Works with Serial communication (USART) and TTL compatible
 Can be easily interfaced with Laptop or Mobile phones with

Bluetooth
You can see the more about the module in the datasheet.
it's time to start.
Step - 1
First I am going to create a sketch for Arduino Uno to Interface the HC-05
Open Arduino IDE.
Here we make this project without any library. First declare a variable
named "inputByte" as char datatype. Alternatively you can use any variable
name. Here we use the character to control the LED. And set the initial
value of "inputByte" is "z" (it is lowercase). Why it is "z" ? See the String
table. It is used to set the initial state of LED as "LOW" (When turn on the
Arduino, Set the LED is off).
char inputByte='z';
Step - 2
Next we need to code the setup part. HC-05 use the serial communication.
So begin the serial communication by using the function "Serial.begin()".
Set the baud rate as 9600. Then set the digital pin 13 as a "OUTPUT" pin.
Because this is the pin which internally connected to the inbuilt LED.
voidsetup(){
Serial.begin(9600);
pinMode(13,OUTPUT);
}
Setup part is completed.
Step - 3
Next I am going to code the loop part. Use a while loop and the function
"Serial.available()". This function returns the number of bytes available to
read. The body part of while loop works only the "Serial.available()" is
greater than 0. Then read the data available in serial port. For that, I use
the function "Serial.read()". Then store it to "inputByte". Then use an "if"
condition. Make the pin 13 "HIGH" if the "inputByte" is "Z" (upper
case).Because the the App will send "z" when the button is in ON mode.
This is for turn on the LED. Next I use a "else if" condition to turn off the
LED. condition for turn off the LED is "inputByte==z"(lower case). Because
the the App will send "Z" when the button is in OFF mode. For more see the
String table.
voidloop() {
while(Serial.available()>0){
inputByte= Serial.read();

Serial.println(c);
if (inputByte=='Z'){
digitalWrite(13,HIGH);
 }
elseif (inputByte=='z'){
digitalWrite(13,LOW);
 }
 }
}

The loop part is completed. You can see the complete code in the code
section of this article. Then upload the code to Arduino Uno
Please make sure the Rx and Tx pin of HC-05 remove from Arduino Uno
while uploading. Otherwise you may encounter with some problem to
upload the code.
Step - 4
Connections
Arduino Uno HC-05
Rx - Tx
Tx - Rx
5v - +5v
GND - GND
Connection is completed. After turn on the Arduino Uno, The indicator LED
in the HC-05 will start blinking continuously

CODE

//sketch created by Akshay Joseph
char inputByte;
void setup(){
Serial.begin(9600);
pinMode(13,OUTPUT);

}

void loop(){
while(Serial.available()>0){
inputByte=Serial.read();
Serial.println(inputByte);
if(inputByte=='Z'){
digitalWrite(13,HIGH);
}
elseif(inputByte=='z'){
digitalWrite(13,LOW);
}
}
}

SCHEMATICS

Interfacing Relay module to demonstrate Bluetooth based home automation
application. (using Bluetooth and relay)

Bluetooth Based Home Automation project using Arduino

In this project, Bluetooth is used to communicate with Arduino using an
Android Application know as S2 Terminal.

Block Diagram of Bluetooth Based Home Automation using Arduino

Components Required for Bluetooth Based Home Automation using Arduino

 Arduino Uno: We use Arduino due to its simplicity and it also
provides a much digital pin to interface with LCD and relay module
at the same time. It is very useful when you prototyping a project.

 HC-05 Bluetooth Module: Bluetooth is very easy to interface with
Arduino. If you are not familiar with it search it on our website.

 4 Channel Relay Modules: The module we use in this project is HL-54S. It
switches on and off using 5v logical signal from Arduino. It can bear up
to 250VAC and 10A. These modules have 4 channels so we can control 4
AC devices at a time.

 16×2 LCD: LCD is used to display project name, a list of commands which
can be entered then it asks to give any command and show the status of
the command which is entered. We use 16×2 LCD because it is easy to
interface with Arduino and very cheap in price. 10k potentiometer is
used to control the contrast of display

 AC bulbs with holders: AC bulbs are used to represent devices and
appliances. Because it is easy to handle and very useful when you are
prototyping any AC project. In final product just replace with AC socket
to control.

 AC wire with plug: I advise you to use good quality wire when working
with higher voltages. It is always good to use electrical tape to protect
connections.

 External 5 volt supply: 5-volt dc supply is required to switch a relay on
and off. Otherwise, it did not work. Also do not supply 5v from Arduino.

Circuit Diagram of Bluetooth Based Home Automation using Arduino

Connections:

Bluetooth Module HC-05

 HC-05 Rx to Arduino Tx.
 HC-05 Tx to Arduino Rx.
 Vcc to 5v
 Ground to ground.

16×2 LCD:
 VSS to a ground.
 VDD to supply voltage.

 VO to adjust pin of 10k potentiometer.
 RS to Pin 8.
 RW to a ground.
 Enable to Pin 9.
 LCD D4 to Pin 10.
 LCD D5 to Pin 11.
 LCD D6 to Pin 12.
 LCD D7 to Pin 13
 Ground one end of a potentiometer.
 5v to other ends of a potentiometer.

4 Channel Relay modules:
 External 5 volts to JD-VCC

 Ground to ground.

 Ini1 to Pin 3.
 Ini2 to Pin 4.
 Ini3 to Pin5.
 Vcc to Arduino 5v.
 Connect one end of all bulbs to normally open terminal of relays.
 One end of 220VAC to all common terminals of a relay and another end

with another terminal of bulbs.
Working of Bluetooth Based Home Automation using Arduino
First of all download S2 Terminal app from Google play store. Open the
application connects to the Bluetooth module. Write the specified commands
and send it. Bluetooth module receives it and Arduino performs the describe
operation, display status and send a message to mobile.

Commands:

Command sent by mobile Message receives by mobile

all on All ON

all off All OFF

white on White ON

white off White OFF

blue on Blue ON

blue off Blue OFF

green on Green ON

green off Green OFF

Code for Bluetooth based home automation system

#include <LiquidCrystal.h>
LiquidCrystallcd(8, 9, 10, 11, 12, 13);
#define white 3
#define blue 4
#define green 5
int tx=1;
int rx=0;
char inSerial[15];

void setup(){
Serial.begin(9600);
pinMode(white, OUTPUT);
pinMode(blue, OUTPUT);
pinMode(green, OUTPUT);
pinMode(tx, OUTPUT);
pinMode(rx, INPUT);
digitalWrite(white, HIGH);
digitalWrite(blue, HIGH);
digitalWrite(green, HIGH);
lcd.begin(16, 2);
lcd.clear();
lcd.print("MICROCONTROLLERS ");
lcd.setCursor(0,1);
lcd.print(" LAB ");
delay(2000);
lcd.clear();
lcd.print("HOME AUTOMATION ");
lcd.setCursor(0,1);
lcd.print("USING BLUETOOTH");
delay(2000);
lcd.clear();
lcd.print("1. Bulb 1 WHITE");
lcd.setCursor(0,1);
lcd.print("2. Bulb 2 BLUE");
delay(2000);
lcd.clear();
lcd.print("3. Bulb 3 GREEN");
delay(2000);
lcd.clear();
lcd.print("Bulb 1 2 3 ");
lcd.setCursor(0,1);
lcd.print(" OFF OFF OFF");

}

void loop(){
int i=0;
int m=0;
delay(500);
if (Serial.available() > 0) {
while (Serial.available() > 0) {
inSerial[i]=Serial.read();
i++;
}
inSerial[i]='\0';
Check_Protocol(inSerial);
}}

void Check_Protocol(char inStr[]){
int i=0;
int m=0;
Serial.println(inStr);

if(!strcmp(inStr,"all on")){
digitalWrite(white, LOW);
digitalWrite(blue, LOW);
digitalWrite(green, LOW);
Serial.println("ALL ON");
lcd.setCursor(4,1);
lcd.print("ON ");
lcd.setCursor(8,1);
lcd.print("ON ");
lcd.setCursor(12,1);
lcd.print("ON ");
for(m=0;m<11;m++){
inStr[m]=0;}
i=0;}

if(!strcmp(inStr,"all off")){
digitalWrite(white, HIGH);
digitalWrite(blue, HIGH);
digitalWrite(green, HIGH);
Serial.println("ALL OFF");
lcd.setCursor(4,1);
lcd.print("OFF ");
lcd.setCursor(8,1);
lcd.print("OFF ");
lcd.setCursor(12,1);
lcd.print("OFF ");
for(m=0;m<11;m++){
inStr[m]=0;}
i=0;}

if(!strcmp(inStr,"white on")){
digitalWrite(white, LOW);
Serial.println("White ON");
lcd.setCursor(4,1);
lcd.print("ON ");
for(m=0;m<11;m++){
inStr[m]=0;}
i=0;}

if(!strcmp(inStr,"white off")){
digitalWrite(white, HIGH);
Serial.println("White OFF");
lcd.setCursor(4,1);
lcd.print("OFF ");

for(m=0;m<11;m++){
inStr[m]=0;}
i=0;}

if(!strcmp(inStr,"blue on")){

digitalWrite(blue, LOW);
Serial.println("Blue ON");
lcd.setCursor(8,1);
lcd.print("ON ");
for(m=0;m<11;m++){
inStr[m]=0;}
i=0;}

if(!strcmp(inStr,"blue off")){

digitalWrite(blue, HIGH);
Serial.println("Blue OFF");
lcd.setCursor(8,1);
lcd.print("OFF ");
for(m=0;m<11;m++){
inStr[m]=0;}
i=0;}
if(!strcmp(inStr,"green on")){

digitalWrite(green, LOW);
Serial.println("Green ON");
lcd.setCursor(12,1);
lcd.print("ON ");
for(m=0;m<11;m++){
inStr[m]=0;}
i=0;}

if(!strcmp(inStr,"green off")){

digitalWrite(green, HIGH);
Serial.println("Green OFF");
lcd.setCursor(12,1);
lcd.print("OFF ");
for(m=0;m<11;m++){
inStr[m]=0;}
i=0;}

else{
for(m=0;m<11;m++){
inStr[m]=0;
}
i=0;

}}

	PTGF (CSE&IT) PTGF(CSE/IT)
	The Arduino language
	The structure of an Arduino sketch
	Custom functions
	Comments
	Scope
	Variables
	Constants
	Operators
	Arduino Programming in C
	Board Components
	Install Arduino Code Editor
	Blink a LED light
	Turn On, LED light with a Push Button
	Using a LRD Light Sensor
	Run Project with Arduino IDE

	LDR – Automatic Night Lamp
	1. Introduction:
	2. Required Hardware
	3. Building Circuit
	4. Programming:

	DHT11 Humidity Sensor on Arduino
	Circuit Diagram
	Components Required
	Circuit Description
	Component Description
	DHT11 Temperature and Humidity Sensor
	Example

	Working of the Project
	CODE
	Applications

	How to Interface LCD (Liquid Crystal Display) Using An Arduino
	What is a Liquid Crystal Display?
	Liquid Crystal Display of 16×2

	LCD Interfacing with the Arduino Module
	Program – Arduino to LCD
	Required Components:
	Circuit Diagram and Explanation:
	Working Explanation:
	Code Explanation:
	Testing and Output of the Project:
	HC-05 Bluetooth Module

	Bluetooth Based Home Automation project using Arduino
	Block Diagram of Bluetooth Based Home Automation using Arduino
	Components Required for Bluetooth Based Home Automation using Arduino
	Circuit Diagram of Bluetooth Based Home Automation using Arduino
	Working of Bluetooth Based Home Automation using Arduino
	Code for Bluetooth based home automation system

